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THE LUKAS PERTUHBATTOK THBOBY CT AXIAIXT SYMMETRIC COMPRESSIBLE H.« 

«IB APPLICATION TO THE OTT "•'.' 07 COMPHBSSIBILITr OH 

THE PRESSURE CCEFFICHNT AT luK SURFACE CT A BOOT OF REVOLLTTO» 

By John 0. Harriot 

row related methods for the study of compressible flow by means 
of the linear perturbation theory are dlaenaead la datall for the case 
of three-dimensional flow with axial symmetry.    A general method which 
include» the other« la also discussed briefly.    Aa aa example of the 
application of these methods,  It la shown that, for a very slender Body 
of revolution In a uniform stream of compressible fluid, the pressure 
coefficient at the surface of the body la almost Independent of Mach 
number.    A more accurate reault for the case of a prolate spheroid, 
which waa given by Schmieden and Kawalkl, le discussed, and It la pointed 
out that this reault may he uaed to advantage for poet bodies of «©der- 
ate thickness.    Experimental data supporting those results are given. 

UriHUUJUTICH 

Because of the high epeede of ncdern aircraft It la desirable to 
determine the effecta of compressibility on the loada which may he 
expected on the various parts of the airplane.    Tula determination le a 
problem In three-dimensional flow, but over the wing at polnta not too 
close to the tips or to the fuselage ths flow approaches closely to 
two-dimensional flow.    Thie fact may be usel aa a guide In estimating 
the erf set of compressibility on the pressures at the wing surface. 
On ths other hand,  the fuselages or moat airplanes are approximately 
bodies of revolution and, consequently, It le ueeful to tocw ths effect 
of oompreenlblllty on the presouree at the surfacs of ft body Of revo- 
lution.   Slnoe ths effect of compressibility on the preseure coefficient 
at the surfacs of a body of revolution Is not the same aa the effect 
on ths pressure cosfflcisnt at ths surface of a body In two-dimensional 
flow, it follows that, at points of an airplane which are close to both 
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the wing aal the fuselage, the effect of compressibility must be more 
complex, being • combination of the effects In two-dimensional flow and 
la three-dimensional flew with axial ajeaahj.    Generally, at euch points, 
the effect of the wing on the pressure coefficient Is greater than the 
effect of the fuselage and, consequently, the compressibility effect 
resembles aore alosely that for two-dimensional flow.    Ota the other band, 
at points of the fuselage far from the wing the flow approximates to 
axial flow and results appropriate to this type of flow are applicable. 

For two-dimensional flow of a compressible fluid past aa airfoil 
or other body, the Prandtl-Glauert law (references 1, 2, and 3) states 
that aa the free etl'saa Mach number   M   increases, the pressure coeffi- 
cient at the surface of the body Increases according to the expreeelon 
lA/l - M".   Tor bodies of small or moderate thickness aad for Mach 
numbers below the critical, this law gives fairly satisfactory agreement 
with experiment, provided the departuree from potential flow are- not 
Important.    It baa boon assumed by a number of authors (referencee h, 5, 
6, aad 7) that the same law any be applied to three-dimensional flow, 
but this la Incorrect, as la shown la references 8 and 9 and the present 
report.    In fact, for vary slender bodlaa of revolution It la shown that 
the pressure coefficient at the surface Of the body la nearly Independent 
of the Mach number, being completely Independent of the Mach number la 
the Halting case of rero thickness.   For the case of the peak pressure 
coefficient (or velocity-Increment ratio) at the surface of aa ellipsoid 
of revolution, reference 9 gives a aore precise result which la applicable 
to many bodlaa of moderate thleknefla aa wall aa to very »lender bodlaa. 

There la a fundamental difference between the pressure-coefficient 
variation with Mach number In two- aad thrse-diaenslonal flow.   The form 
of the Prondtl-Clauert law which la satisfactory for bodlaa of moderate 
thickness In two-diaenalonal flow la independent of the thlcknecs ratio 
of the body; whereas for axlally eTUB»trie flow the law for- the pressure- 
coefficient variation depends strongly upon the thickness ratio of the 
body. 

The Prandtl-Glauert formula for two-dimensional flow la obtained by 
means of the linear perturbation theory of compressible flow In which the 
departures of the fluid velocity froa the uniform free-stream velocity 
are assumed small and their squares are neglected.    Zt 1* clear that the 
theory fails In the neighborhood of a stagnation point and that elsewhere 
it la at beat approximate, the approximation deteriorating. In the oaae of 
flow past a streamline body, aa the thlekneea and eaaber of the body in- 
crease.    There are a number of ways of applying this linear perturbation 
theory to the study of problems of compressible flow, but for any particu- 
lar problem one method any be aore convenient than the others.    Three such 
general methods are described in detail In reference k.    Theee methods, 
as described In reference k, are applicable only to two-dimensional flow. 

L 
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A fourth netted vhlch 1B applicable to both two- and three-dimensional 
compressible flow la presented In reference 8. In all these method« the 
properties of a compressible flow are deduced by comparison «1th a cor- 
respcndins Incompressible flow whose characteristics era known. In the 
application of the fourth method to the problem of two-dimensional flow 
shout a body or throe-dimensional flow about a body of revolution It la 
necessary to take account of the fact that the bodies la the correspond- 
ing compressible and incompressible flow« are of different sizes. On 
the other hand, In method I of reference k,  which la, unfortunately, 
applicable only to two-dimensional flow, the alee, shape, and orientation 
of the body are the ease In the coapreeeible and incompreeslble flows. 
Consequently this method la more convenient for certain problems. It 
la pointed out In reference k that the other methods presented there 
posses« certain advantages for other problems. It any be expected that 
methods for the study of three-dlasnalonal compressible flew analogous 
to those of reference fc will be useful and convenient for the solution of 
many problems. The present report describes three methods (methods I, II, 
and III) analogous to those of reference », for the stud? of axlally sym- 
metric conpreeelble flow by means of the linear perturbation theory. 
The msthod of reference 8, designated method IV, la added for completeness 
and 5ts relation to the other methods la pointed out. A general method 
which includes the others la also discussed. In method II the alte, 
shape, and orientation of the body are the earn» In the compressible and 
lncompresalble flows, and consequently, this method Is more convenient 
for certain problems. Cn the other hand, methods I and HI may be more 
convenient for other problems. Great care must be exercised In using 
methods I, II, and III as they are applicable only to my Blander bodies. 
Msthod IT la not so restricted. 

If method II la applied to the problem of determining the effect of 
compressibility on the pressure coefficient at the surface of a roxj 
elender body of revolution, It Is found that the pressure coefficient la 
Independent of Mach number. For very elender bodies this result Is In 
agreement with that of reference 8, In which only an ellipsoid of revo- 
lution le atudled. It la instructive to obtain the earns result by each 
of the other three methods, but, In ordor to do so. It Is necessary to 
determine how the pressure coefficient at the surface of the body varies 
with the fineness ratio of the body In Incompressible flow. It Is shown 
In this report that, for a very elender streamline body of revolution, 
the pressure coefficient at the surface of the body Is inversely pro- 
portlcnaJ to the square of the fineness ratio. Ulla disagrees with the 
result used In reference s but agrees with that In referenoe 8 for the 
limiting case of a rmry  Blender body. The pressure-coefficient varia- 
tion for bodies of moderate thickness Is also discussed. 

I 
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Tbo following symbols are uaad throughout this report: 

static pressure 

aaas density 

veloolty 

x»y»« Cartesian coordlnaten 

*#M cylindrical coordinates 

WT«     oomponsnta of valooltr In  x,y,,   directions 

•r 

ao 

4 

P 

M 

P 

9 

T 

h,h' 

?Z 

• 

a 

1,1 

2D 

e.k 

perturbation velocity In   z direction   (Tx - vQ) 

radial component of -relcclty 

Telocity of sound In free stream 

dynamic pressure   ! J-pV2 ' 

pressure ooefflolsnt   I (p-pc)/q0] 

Mach number In free stream   (V0/ae) 

velocity potential 

stream function 

radii of stream surfaces 

length of body of revolution 

maxima radius of body of revolution 

angle of attack 

elliptic coordinates 

dletance between feel of ellipse 

i of ellipse 

* 
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0       eccentricity of ellipse 

Subcorlpts and Superscripts: 

0 In free or undisturbed stream 

1 incempresslblo or low speed 

c        compressible 

*       at surface of body (appendix only) 

1 

- 

IBB LTJBA3 EEBTUHBATICW THEORY 

Consider the flow of a compressible fluid past a solid body, the 
undisturbed velocity of the fluid relative to axes fixed In the body 
being a uniform velocity V0 along the axis of x,    as shewn In figure 
1; assume that the departurae of the Telocity fron the undisturbed 
velocity VQ are small. The changes In pressure will than be email 

compared vlth the undisturbed pressure and will be proportional to the 
changes In density, the ratio being the square of the mioclty of sound 
In the free stream. On a linear theory In which squares and products 
of small quantities are neglected, Bernoulli's equation 

J    a      2 P      2 

for steady lrrotatlonal motion beccmee 

constant 

PTo 

«o 

From equation (l) there ie obtained 

FoV 
2V" 

(1) 

— " 1 — P^_X 
a 

The equation of continuity becvaa 

7°«*°o'v5T 

vli 

do / cWx    . OT        &/t \ 

(s) 

(3) 

. 
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If a reloclty potential   <p   la introduced satisfying tha relations 

and if aquation (2) la used, aquation (3) become tha faniliar equation 
.2       .a       »a 
0 aj     o <p     o <p 

0"S7 + a7***"° 

P« - X - M» - 1 - ^= 
•o 

(*> 

Tha transformation of thla aquation Into cylindrical coordinates x, r, 
0   yields 

dSp  d8»  1 )p  1 d"e> 
(5) 

In tola report tha flow la aeaunad to poaaaaa axial njwialij about tha 
x-axla unleaa otherwise etated. In thla oaaa d*9/de* - 0 and aquation 
(9) reduces to 

a8q>   a8«p   i a* 
(6) 

A strenm function   *     any now ha Introduced writing 

1 d* i a* 
^x-'o;^ "vr--p0;s 

Fron thla daflnltlon tha following approximate relations are obtained: 

— — --x
r--(l-M»-Xj(l + l-X]-i + Baljt    (7) 

- 

- 
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00TD" 

T 

(8) 

The point» for which   +    la constant constitute a surface vhlch say he 
called a streaa surface.    The stream surface Is In torn Bode up of 
streaallnee. 

If a solution for Incompressible 'flow   (0-1)    la known, solutions 
for ralues of   ß   less than one aajr to deduced In several ways when shock 
waves are absent and the assumption of aaall departures fron a uniform 
velocity Is approximately correct. 

Method X 

For three-dimensional flow with axial try let 

<p - v<ji + f (x,r) (9) 

I 
bo a solution for the velocity potential for lnoompraaalble flow 
(e-l)   and lot 

• - gV* • *<*>*> d°> 

be the corresponding stream function oo that the following relations 
must hold true: 

*fx(x,r) - j *,(*»'). 'P(*,r) • r = «,(*.')        (11) 

It may be noted that   g(-»,r) » 0   sine* the flow la undisturbed at 
Infinity upstream.    It la assumed that the limit of   g(x,r)   aa   r 
tends to aar* la finite and not tero for points   x   of the body not 
eloae to a rtj    i'.lon point.    (This assumption la correct at laaat for 
flow about •. :..»:!>Ine Ovoid or prolate epherold.) 

1fs   denotea the partial derivative of   f(x,r)   with respect to   x: 
namely,    df(x,r)/ox   and   fr • or/or.    In equation (13)   rr(x,0r)    la 
the value of   fr   at   (x,0r)   and not the derivative of   f(x,0r)   with 
respect to   r. 

L 
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Then a eolutlon of equation (6) for 9 < 1 la 

9 - T^t • - f(x.Pr) 

The longitudinal and radial ooaponente of Telocity are 

Tx " To • p ^ (*#•*•> i Tr • **><•»•*> 

from equations (7), (8), and (11) It follow that 

V? 5 " x * £ f*(x'M • l * f? «*(X'',^, 

(18) 

(13) 

£g--£*<«.»>• ife %<**> 
Then tbe stream function la 

t - J Tor» • j g(x,3r) (1») 

If the body were remcTed, the reloclty at all polnta of the field 
would De    VQ    and the velocity potential and stream function would be, 
reapeetHely,   VpX   and   ia^r8.   The stream awfaeoa would he right 

circular cylinders with axes along the x-axla.    The effect of the body 
la to distort thrae etreaa surfaces.    Let   h   denote the radius at   x 
of a given stream aurfaea with the body present.    If the body ware 

OTed the radius of this etreaa eurface would be    h',    ao that 
h-h»    la the dletortlon of the etreaa aurfaea caueed by the presence 
of the body.    If   r - h   la eubatltuted In equation (la) and it is 
obeerrad that   t   baa the 
not,  there la obtained 

value whether the body la present or 

•-!'o""•M0t'ßh)"^*°(h,," 

'  i 
•*• 

• 
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For value« of 
approximately 

and   h*   which are not too «mall this equation yield» 

„ „.   ,     Hi*,») «(»,M») 
BT0(b*h») V» 

(15) 

The distortion of the stream surface In the caee of Incompressible flow 
1« obtained by setting I - 1 In equation (19). If the point« (x,r) 
in the expreamtle flow and (x,0r) In the incompressible flow are 
called corresponding points, then It la eeen at once fro» equation (19) 
that at point« far frca the body the distortion of the etresm surface in 
the ccnpreesible flow la the sane aa that at the corresponding point of 
the incompressible flow. To find the relation between the distortions 
near the body (i.e., near r - 0) it la only necessary to aat • - 0 
In equation (la), than, slnoe g(x,Pr) la nearly equal to g(x,0) at 
points of a very slender body not close to a stagnation point It follows 
that the radius of the tero etrea* surface at any x In the compressible 

flow la 6-t tlBss the corresponding radius at the saas x In the in- 
compressible flow. It should bo noted that the distortions near the 
body differ fron those far fron the body. 

from aquation (13) it la seen that the increase in the longitudinal 
velocity at any point in the ccmprssslble flow la l/a tines the increase 
at the corresponding point In the lnoonpraaalbla flow, haar the body the 
longitudinal Telocity la nearly Independent of r and consequently near 
r • 0 the longitudinal Telocity Increase In the compressible flow la 
l/a tines Its value at the eame point In the Incompressible flow. 
Because of aquation (l) the own* relations are true for the pressure 
coefficient. Also fron aquation (13) the radial Telocity at any point 
In the compressible flow la the ease aa at the corresponding point In 
the lnoonpraaalbla flow but no general eomparleona can be given near 
r - 0 because the radial velocity depends upon r even for «aall r. 

Method II 

Correapondlng to the solution given by equations (9) and (10) for 
the incompressible flow 

• - Y^x * f(x,8r) 

nay be written In place of equation (IS) for any a < 1. The longitudinal 
and radial components of velocity are 

vx " *o • 'x(»'Bp>' Tr " •Mx'Br> 
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function la found to be 

dietortlon of a atraan surface U »pproxlaately 

It follow» that tlw distortion of th» »»»»Mi »urfao» at any point 
far fro« th» body in th» ocaprasslbl» flow la   ß   tlaaa the distortion 
of th» atrian «urfao» at th» oiaiaaamfllin point In the lnooapreaalbl» 
flow,   lb» radio* of th» aaro straw surfaos at any   x   la th» sane In . • 
th» ooapresslble and Inooapraaalbla flows or, In other word«, th» »It», 
shape, and orientation of th» body ar» th» »an» In both fleas.   Ha) 
pressure coefficient and th» lnoreaae In th» longitudinal Telocity at 
any point In th» conprossible flow are the sen» aa at taa corresponding 
point In th» lnoonpraaalbla flow.   Saar   r • 0   th» pressure' coefficient 
and the Irwuaae In th» longitudinal velocity are the ana» In th» ooa- 
praaaibl* and incompressible flow».   Th» radial velocity at any point 
in the caannelble flow la   a   tlaaa lta value at th» oorraapondlng 
point in th» lncojipreaalble flow. ... 

It »my be nmtlonad bar» that vieaeisberger (rafaganea 10) «aa» • 
method to atady compressible flow which la »aaantlally P»thod U of th» 
praaant report, although he doe» not attempt to foraulate any general 
nethod; however, ha »tart» fron a «lightly different point of *l»w. 
Inataad of assuming th» Telocity potential to ha'taa ssa» at oorpe- 
•pondlng points of the compressible and ln«ompre»»lbl» flows, sf anna 
In taa praaant report, th» condition la Imposed, that th» body shape« 
»hall be th» ssa» In both flows and It la concluded that the velocity 
potentials nuat be th» ssa» at oorraapondlng point». 

itsthod m 

Corresponding to the »olutlon given by equations (9) and (10) for 
th» lnccmpreeelble flow 

• . TpX • f<x/B,r) 

•ay be written In place of equation (18) for any   0 < 1.   Th» longitudinal 
and radial ooanenanta of velocity an 

* 
' 
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a* 

I 
u 

Tx " *o • J tx(x/»,r), Yr - f,(x/B,r) 

The ntreem function la found to be 

* • Jv" * *(*/»'*> 
The distortion of a stream surface la approximately 

2Bg(x/g,h)   Dg(x/p,h) 
h"h ""liiw!) *j- 

It follows that the distortion of the stream surface near x • Xi 
and any r In the compressible flow la p tlass the distortion of 
the stream surface near x • xi/p and the seas r In the Incompressible 
flow. The radius of the lero stream surface at any x In the compressi- 
ble flow le 6» times the corresponding radius at x/ß In the Incom- 
pressible flow. The pressure coefficient and the Increase in the longi- 
tudinal velocity at X-Xi and any r In the compressible flow are 
1/9 times their values at x - xi/ß and the same r In the Incom- 
pressible flow. The radial Telocity at x • Xi and any r In the 
compressible flow Is the ssae as at x • Xi/p and the same r In the 
Incompressible flow. 

Method XT 

A fourth method, which Is called en extension of the Prendtl rule, 
is given In reference 8. It Is expressed In the following eonelee form: 

The streamline pattern of a compressible flow to be calculated oan 
be compared with the streamline pattern of an Incompressible flow which 
results from the contraction of the y- and t-axeo Including the pro- 

file contour by the factor P • •/1 - M* (x-axls In the direction of 
the free etream). In the compressible flow the pressure coefficient 
as well aa the Increase In the longitudinal Telocity are greater In the 
ratio l/fl* - l/(l-M") and the streamline slopes greater In the ratio 

l/ß - 1/. 1 - M* than those at the corresponding points of the equiva- 
lent lncompreeslble flow. 

This method le applicable to both two- and three-dimensional flow. 
The proof given In reference 8 dlffere from the proofs of methods I, II, 
and m given In the present report, hut for the ease of axlally symmetric 
flow the methods of the present report may also be used. In this ease 
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9 - Vox + — f(x,ßr) 
P" 

la written In place of equation (12).   The longitudinal and radial 
components of velocity are 

Vx " To • 7i fx(x.ßr),   Vr - i fr(x,pr) 
P P 

The stream function la found to be 

* • fyo*? + \ Bb.flr) - A [b0l!*)a • 8<x,pr)j 2 pB p8 L«1 J 

From thin It is seen that the points In the Incompressible flow which 
correspond to the points of a slnsle stream surfaoe in the compressible 
now, themselves lie on a single stream surface in the incompressible 
flow. In other words, if the compresslblo-flow field is transformed 
by multiplying the r-ooordinate of each point by p, then stream 
surfaoec In this field are mapped into stream surfaces In the 
inaoupreasible-flcw field. Thus, the two fields are entirely similar 
and no approximation Is Involved in comparlnc the shapes of the bodies 
or radii of the stream surfaces In the two flows; whereas In methods I, 
II, and III the comparison of the body shapes depends on an approxi- 
mation and becomes exact only In the limiting case of a body of zero 
thickness. Thus, method IV may be expected to be the most accurate 
of tho four methods, eupocallly for bodies of moderate thickness. Of 
course, tho thickness of the body is still limited by tho assumptions 
of the linear perturbation theory. In this connection it may be 
pointed out that for many problems one of the other methods may be 
preferable from the standpoint of convenience, but oare must be 
exorcloed in their uoe. 

General Method1 

It is now possible to tfve a general method which Includes tho 
preceding methods as special cases. 

Corrocpondlng to the solution given by equations (9) and (10) for 
the lncompreGolble flow a potential function 

<? = VQX + X.if(XaxJ'.3r) (16) 

1The general method as outlined in this section is due to 
Mr. Dean S. Chapman of the Ames Aeronautical Laboratory. 
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I 
la desired. The constant« *i,  \-i.-S  must b* chosen ao that equation 
(16) aatleflea equation (6). If equation (16) la substituted In equation 
(6) and It la recalled that equation (9) PRtieflea equation (6) with 
9 " 1, It la easily found that 

8>8 • >s (17) 

la a necessary and sufficient condition that equation (16) he a solution 
of equation (6). Ihr longitudinal and radial components of velocity are 

Tx " vo * *i*a fxfr«Xf*sr), TP - *i*s frt^ax.^r) (18) 

The stream function nay he found a« in method I. Fran equation* (7), 
(8), (11), and (17) it follows that 

IJr S " " Tj1 fr<*«*»V) • BJl«(**t»VJ 

Then the strotim function Is 

* * a'«'" * ä 8(>aX'>*") (19) 

Since any two of the three constants     \, ?.a,    and   > 3   can he chosen 
arbitrarily, there is a double infinity of methods. 

In general, !n transforming frem the compreeslhlo-flov field to the 
IncrwpreSBlble-flow field,  streaa surfaces are not mapped Into stream 
surface«,    if, however, It Is desired that stream aurfaces map into 
strnnm surfaces, as In method 17. then an additional condition must be 
Imposed on the   X.    Equation (19) may be rewritten 

-*—* - - 

- 
- 

.     - 
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In order that stream surfaces nap Into stream surface« It la necessary 
and sufflciont that 

If equation (17) la 
by 

,,  It la seen that aquation (20) 

18  9" 

(20) 

i be replaced 

(a) 

There la thus a single Infinity of method» satisfying both equations 
(17) and (21). 

If In addition It la desired to tore the x-coordlnate the same la 
both flows, it la necessary to ohooaa Xx • 1 and there la than only 
one method satisfying both equations (17) and (21). Iron these equa- 
tions It follows that \i - x/ef and Xg - p. Ihla la the saw as 
•ethod IV which has already bean discussed. It Is easily seen that for 
methods I, II, and III equation (17) la aatlafled but aquation (21) la 
not. 

It should be pointed out that great care should be exercised whan 
using nethoda for which aquation (21) la not satisfied. For such methods 
the comparison of body shapee la valid only for very slander bodloa. 
Methode for which equation (21) la aatlaflod are not so restricted. It 
«ill be useful to discuss In acre detail the general properties of aeth- 
oda for which both equations (17) and (21) are satlaflsd. Fran equa- 
tions (18) and (21) It la seen that the pressure coefficient and the 
Increase In the longitudinal velocity at any point In the compressible 
flow are l/p* tlaea their values at the corresponding point in the 
Incompressible flow. The thickness ratio of the body In the coapresslbls 
flow is Xs/x? m i/o times the thlekaaas ratio of the body in the ln- 
compreaalble flow. Also the streamline slopes In the compressible flow 
are greater In the ratio XiX, - 1/p than those at the corresponding 
points of the lncompreeslble flow. 

It aay be noted that. If the general analysis Is applied to two- 
dimensional flew, equations (17) and (21) are unaltered; however, the 
stream function la given by 

* - Vor * BXig(*eX,X3y) 

11 — 

• 
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InatMd of by aquation (19)'    It la earily MOB that the methods of 
reference k satisfy equation (17) but not aquation (21) -and hence stream 
surfaces In the compreselble flow do not nap Into stream surfaces In the 
eorraapoxtlng incompressible flow. 

VARIATIOT CF THE PRESSURE COEFf ICIMT WITH THE 

RATIO IB HBOMPHESSIBUS FLOW 

It baa been shown that In methods I, III, and IT the flnanaaa ratio 
of thb body la not the same in the compressible and lncomproeelble flow. 
Consequently, In order to study the effect of compressibility on the 
proBeure coefficient at the turfaoe of a body of revolution by any of 
these methods,  It la necessary to determine how the pressure coefficient 
at the surface of the body depends on the flnanaaa ratio of the body In 
the case of Incompressible flow. 

Suppose the velocity potential and stream function for the flow 
about a elender stroamlino body of revolution placed In a uniform stream 
of lncoapreaalble fluid are, respectively, 

<p - Y0T + f(x,r) 

• - 5V8 • 8(x.r) 

(22) 

(23) 

30 that the following relations must hold true: 

fx(z,r) - - er(x,r), fr(z,r) - - - g,(x,r) 

: 

assumed that the' limit of s(x,r) as r tends to cero la finite and 
not zero for points x of the body not oloae to a stagnation point. 
Then the velocity potential and stream function for the flow about a 
second body obtained from the first by multiplying the lateral dlmen- 
elons by n are approximately 

. f - V0x • n
af(x,r) 

1  •  * / 

(2») 

(25) 
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This la «nally seen by eonelderlng tile stream function« of the two flows, 
noting that • • 0 on the bodies, and that g(x,r) la approximately 
equal to g(x,0) since r 1* 

If Pi and Pa denote the pressure coefficients for the earn» x 
at the surfaces of the respective bodies whose radii are rx and nr1( 
It follows froB equations (l), (22), and (2*) that 

*i " 

Pa  - 

8(VV 

2(V'x)a 

2fx(x,n) 

8B^fx(«»nri) 

Bence these equation* give the approximate relation 

h. 
Pi 

(v'x)8Ao 

(T'x)lAo tX(*,Tl) 
n» (86) 

ThlB approximation le valid for a wry elender body since close to euch a 
body the longitudinal velocity Increase fz(x,r) la nearly Independent of 
r. It le true that for a prolate epberold f*(x,r) becomes logarithmi- 
cally infinite but It le still true that the limit of fx(x,nr)/fx(x,r) 

le unity ae r tends to zero; this le sufficient to prove equation (26) 
for the limiting eaee of zero thickness. 

On the other hand, the relation of equation (86) may not be the 
meet satisfactory one for bodlee of moderate thlckneee. Approximate ex- 
preeelone for the preeeure coefficient and velocity Increase at the eur- 
faco of a prolate spheroid are given In the appendix. Let the subscript 
1 refer to a prolate epberold of thickness ratio t/l and the subscript 
2 refer to a body of thlckneee ratio r.t/J. If teme of order (t/I)B 

anl higher are neglected In equation (A6) there le obtained 

(Pmax)g     [(V'xWJsAo     -(nt/»)'log(nt/l)a 

(pmax>x      Ifr'.WjiAo     "(t/l)" leg(t/l)s 

I x: 

i • 
log na 

log(t/l)a (27) 
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If tana of order    (t/lj*   are retained but terns of higher order 
leetad In equation (A6) there la obtained 

(W,    [(^W^IAO    - §(nt/l)»log('rt/t>' -(l-logg)(nt/l)' 

(Wx " [frVi«jA " - $WD WV*>" -(l-log2)(t/l>" 

17 

neg- 

• «• IV • E log BB 

log(t/l)* • 8 (l-log2) 

• 
] (38) 

In •.ppljring these relations to the study of compressible flow by •satis of 
method XV It «111 be necessary to take n equal to P. Corresponding to 
• Msch number of 0.8, P la 0.6. With n - 0.6   the approximations given 
In aquations (27) an! (28), aa «all aa the true valuee of the left members 
for a prolate epherold, are plotted aa a function of t/l In figure 2. 
In addition this ratio Is plotted in figure S for the NACA 111 series 
(reference 11) of bodies aa wall aa for a series of bodies given In ref- 
erence 12. Unfortunately these nerlee of todies are not related to one 
another ao that one body may be obtained from another of the series by 
multiplication of the radii by a fired factor. Howsveis the distortion 
la not great. Straight lines corresponding to n • 0.6 and n» » 0.36 
are added to figure. 2 for comparison. It appears that for email values of 
t/l equation (28) gives the beet approximation for the prolate spheroid; 
whereas for large values of t/l aquation (87) la better, but neither la 
of much value for values .of t/l .in excess of 0.30. The approximation 
given by equation (28) appears to be most satisfactory for general use 
but its application should be restricted to bodies whose thickness ratios 
are less than 0.30. It should be noted that aa t/l tends to zero the 
rlflht members of equations.(27) and (28) both reduce to n» In I 
with equation (26). 

VARIATION CT PRESSURE COEFFICIENT VT.TH MACH 

mama nt COMPRESSIBLS FLOW 

Consider a Blender streamline body of revolution of length 21 and 
maximum radius t In a uniform stream of compressible fluid. Suppose 
that the undisturbed fluid flove In the direction of the positive x-axls 
and that the body la placed «1th its axle along the x-«xis and its center 

•—- . 

- 
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at the origin aa •hem la figure \,   Denote by Pe th» jmm eoeff 1- 
elent at any point X Of the surface of tha body. Ut Pj to the pree- 

eure coefficient at tha eana point of UM «urface of tha MB» body under 
the assumption that tha fluid la lncompre»»ibl». 

Method XI la tha noet convenient method to UM, for tha alia, 
and orientation of tha tody are unchanged In tha corresponding lnconpreeai- 
ble flow. It follow at once that P0 • Pj or. In other word», that the 
pressure eoafflelant la Independent of tha Mach maker. 

In ualng an/ of tha other method». It la neceaeary to take account 
of tha change in tha shape of the body In paaalng fro» the compressible 
flow to the corresponding lncompre»»ibl» flow. Since aathode I and HI 
are valid only for vary elender bodlea tha appropriate preeeure-coefflcient 
variation with thickness le given by equation (86). When method I le uead, 
the corresponding body in the ineojnreealble flow la of length 81 end 

maximum radius tp* so that Pe - (l/P)(9Pi) e Pi. Again, If method HI 
le uead, the body la tha lnconpreealble flow la Of length 21/0 end maxi- 
mum radius tp-t ao that tha thlcknese ratio la decreased in the ratio 

P*. It follow» that Pe - (l/p)(pPt) - Pt. Plaally whan method IT la 
uaed the body in the Incompressible flow la of length 21 and —»«—— 
radius tp ao that P0 - (!/»•)(0"Pi) - Pft, 

Methode I, II, end III are valid only for very elender bodlee not 
only because aoae distortion le Introduced In the comparison of the body 
ahapee but also because the alight Variation of tha pressure ooeffleleat 
with distance from tha axla of tha body le neglected when thia dlatanoe 
le email. Tnle variation with distance aaet be considered in order to 
avoid Inconsistent results If the closer approximations of equations 
(87) and (28) are uaed In conjunction with methoda I, II, end III. 
Since this le inconvenient to do and eine» method XT le not eubjeot 
to these limitation», It is preferable to nee the Utter method whan 
the closer approximation» given by equation» (27) end (28) ere need. 

that 
If equation (27) le need together with method IV It le easily found 

r 

(p««)i rfr'-Wt.Ao 
log p« 

I" "'aaxti''»    HaW»)« 
L    J 

whereae, if equation (28) le need, there le obtained 

• 1 • 
Xogf (fV, 

(•,x)BB1]1/'0 
r        log(t/D» • 2(l-iog2) 

(29) 

(30) 

~» -T^iaiHfjSV'"-1 
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Equation (89) 10 '-to result of reference 8 and equation (30) Is the 
asymptotic first approximation of reference 9« Ths remit of equation 
(30) Is shown graphically la figure 3. 

Figure 2 shove that equation (30) la likely to be Moat suitable 
for general use although for thicker prolate spheroids equation (89) 
would appear to be better. Keltber of these equations should be used 
for bodies whose thickness ratios exceed O.30. for thicker bodies the 
«ore exact result« of reference 9 may be used, for very slender bodies 
the right members of both equations (29) and (30) reduce to unity In 
agreement with the result previously obtained. In the application of 
equation (30) to bodies other than prolate spheroids, t/t nay be 
ohosen as the actual thickness ratio of the body or as the thickness 
ratio of the spheroid having the.sag» peak pressure coefficient as the. 
body, or t/t as/ be ohosen In sea» other appropriate manner. Ihle un- 
certainty In the choice of t/l will not materially affect the results 
obtained from equation (30). 

References 8 and 9 study only the mjixlmwn velocity increment, but. .' 
If equations (A9) and (AIO) of the appendix are used, and terms of order' 
(t/lj» are retained, then It is easily shown that at the surface of a 
spheroid 

(V'x)cAo 
i • 

log 9 

log(t/l)8 + sJlX-U/D' )-log2l. 

log B*. n  , i  
Pi "     * log(t/l)8 + (*/l)B/n-(x/l)BJ +2-21cg2 

(31) 

(38) 

-o*l and It should be noted that In contrast to equation (26) f 

[(V'x)e/VoJ/[(V'z)i/re] are slightly different because tens of higher 
order have been retained. Of course equations (31) and (32) are valid 
only over the central portion of the spheroid and are invalid near the 
stagnation points. When x • 0 equations (3D and (32) reduce to 
equation (30). Generally It will be sufficiently accurate to use equa- 
tion (30) In place of equations (31) and .(32). 

ESTIMATION OF CRITICAL MÄCH NUMBERS 

The critical Mach number of any body can be determined from Its 
low-ereed peak pressure coefficient provided the variation of peak 
pressure coefficient with Mach number is known. If equation (30) la 



used to estimate this variation for a body of revolution and If In this 
equation t/l la choson aa the thickness ratio of the prolate spheroid 
having tba name peak presaure coefficient aa the holy under coneidera- 
tion, then the solid curve of figure fc la obtained. If the law for very 
slender bodies la uaed, namely, that the pressure coefficient la Inde- 
pendent of Mach number, the dashed curve of figure a la obtained, the 
curve« applicable to tvo-dlmensicnal flov obtained from the Prandtl- 
Glauert and Karmnn-Teien (reference 9) lava are shown for eaaparlaen. 

EXPERIMENTAL RESULTS AIIC DISCTJSSIOH 

In order tc determine whether the results of the present paper are 
In agreeaent with experiment, a considerable amount of experimental pree- 
aure data wee atudled. The fueelagea of many airplanes are approximately 
bodlea of revolution but moat data have been taken with the wing on the 
fuaelage. At stations near the wing the pressure coefficient la mere 
Influenced by the praaence of the wing than It la by the fuaelage. Con- 
sequently, data on the fuaelage without the wing or on the fuaelage far 
frcm the wieg are needed. 

IresBure data for a fuaelage without a wing cr ither protuberance» 
were available for only one alrplace which, In trie report, la designated 
aa airplane A. These data were taken In the Amea 16-feot hlgh-apeed wind 
tunnel and ocrrected for tunnel-wall effects, the correction to the Mach 
number being In the nelgthorhocd of "5 percent. This fuaelage la a bndy 
cf revolution. Back of the maxlmm section, the regular fuaelage waa 
replaced by a crnleal shape ae shewn In figure 9- The length of the model 
tested waa 139.0 inches and the wivlaua thickness waa 37.*&  inches, giving 
a fineness ratio of 3-999. The lccations of the pressure orifices are 
alao abown In figure 9- The mcdel waa supported In the tunnel by meana 
of tve struts connected to It about «9° on either aide of the bottom 
vertical center line of the fuaelage. Since the data frcm the lower 
orlfloee might be Influenced by these strut?, the variation of pressure 
coefficient with Mach number le ehcvn In figure 6 enly for the orifices 
on or near the tap of the model. The data of orlfloee T-2 and T-3 may 
be Influenced by the preeer.ee of two holes In the fuaelage near the nose 
which were to simulate gun ports. For purposes of ocmparlacn a l/B 
curve is added In each caee. Per orlfleea T-7, TP-7, T 8, and TR-8 a 
curve ehowlng the theoretical variation of the peak pressure coefficient 
ae given by equation (30) le added. This curve la aeen to lie very cloae 
to the l/B curve appropriate to two-dlmenalonal flow. It can be aeen 
that for the crlflc«e T-7, TR-7, T-8, and TR-8 the experimental preeeure 
coefflclenta rlee allghtly with Mach number but leaa than predicted theo- 
retically by equation (30). At the other orifices the pressure coeffi- 
cient rlaea leaa rapidly and even falls at acme ef the orlfleea, chang- 
ing eigr. in r.e or twe caaea. Thla la not predicted by the linear theory 
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•t «11.   A more accurate and detailed calculation carried out In reference 
13 far a particular body, however, reveals such behavior on some parts of 
tte bod/. 

The other available data «ore for a fuselage with vlng.   It wi con- 
sidered that proosure data for orifices near tte nose of a long fuselage 
would bo little affected by the presence of tte wln£.   Ifear the wing, tte 
effect of tte «lag would bo predominant. 

Figure 7 shows tte forward, portion of tte fuselage of airplane 8 
together vlth tte position of tte wine.   Tte fuselage la nearly a body 
of revolution, but tte upper surface la complicated by tte presence of 
tte pilot's windshield; wharoaa tte lover surface differs fron tte regu- 
lar steps only by havlne a flat bombardier's window very near tte nose» 
lbs locations of flvo pressure orifices on tte lover surface of tte 
fuselage on Its vertical oeater line are also shown.   These orifices 
are all to tte roar of tte bombardier's window on that portion of tte 
fuselage which approximates most olossly to a body of revolution,   figure 
8 shove tte variation of proosure coefficient vlth Mach number at these 
five orifices.    These data were taken In tte Arnes lJ-foot hlgh-speod wind 
tunnel and were not corrected for tunnel-wall effec*'.   It Is seon that 
at those orifices farthest fron tte nose tte preesw coefflolsnt Is ro- 
narkaMy constant as the Nach number la changed. 

Figure 9 shovs tte fuselage, wing, and canopy of a l/5-scaJ.o modol 
of airplane C together vlth the locations of sons of tte pressure orifices. 
The forward portion of this fuselage Is approximately a body of revolution, 
tte noss duct having teen replaced by a plug.   Pleura 10 shovs the varia- 
tion of the pressure coefficient vlth Mach number at a number of orifices, 
tte date having been taken for tte wing and basic fuselage but vlth tte 
eeaopy removed.   A number of orifices are not shown In figure 9 as it is 
drawn with the canopy on.   But the position of each orifice for which 
data are given In flcurs 10 Is deaerlbod by Giving Its distance In inches 
from tte nose of the' fuselage vita plug.   Those data were obtained In tte 
Lonfjay C-foot hlji-apoed wind tunnel.   It Is ssen that, at those orifices 
which are well forward of tte vlng, tte prsaaure coefficient is reariy 
cans tent or Increases slowly vlth Increasing Mach numbnr. .its curve re- 
oal.-utig below the   1/0   curve; but near the win-, the taerat ic of the pres- 
sure coefficient is ouch more rapid and at several oriflone J-J .-ncreaae 
Is more rapid than   1/0.   At ouch orifices tte effect of tin vlng la 
greater than that of the fueelaco.   Moreover the flow over U . vlng la 
more nearly two-dimensional and so the   1/0   lav would be expected to 
hold.   Tte critical Mach number of tte wing is 0.60 and title may account 
for the drops in some of tte curves above   M • 0.70. 

It was considered that in tte cases of airplanes B and C the bodies 
tssted did not resemble pure bodies of revolution sufficiently closely 
to warrant a comparison of the test results with the theoretical results 
of equation (30). 

--- 

" 
- 
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HI» Kollsman pltot-atatle tube T.S.S.C. Ite. 86-9-8930 la •bow la 
figure 11.   Thle Mb« la a body of revolution, and a abort distance baok 
of the nose lto cross «action remain's constant for a considerable dlatanoa, 
the diameter of tale constant portion being seven-eighth Inch,    lbs static 
orifices are located near the center of thle length Of constant cross sec- 
tion aal are 5-l/l6 Inches from the nose.    Figure 18 ebons the variation 
of preesure coefficient with Mach number at the static orifices of tola 
pltotr-atatle tube.    These data were obtained la the calibration of this 
Instnajsnt la the Ames 1- by 36-foot hlgb-spssd «lad tunnel and corrected 
for the effect of tunnel blockage.    The tunnel choked at a Mach number 
of 0.992 and at Mach numbers close to this value the tunnel corrections 
are unreliable.   For this reason the sharp drop la the curie occurring 
at Mach numbers over 0.9 should be disregarded.   For purposes of com- 
parison a   l/ß   curve was added to figure 18 as «all as a straight line 
to Indicate the theory of the present report for wry slender bodies, 
la addition, a curre baa been added showing the variation of'peak proa- 
sure coefficient as predicted by equation (30) for a body of fineness 
ratio 80, this being the fineness ratio «blob appaara appropriate to 
the modal tested.    Zt la seen that the pressure coefficient la nearly 
constant increasing only very slowly with Increasing Mach number,   lb» 
Increase la very email and la not far from that predicted by equation 
(30) but Is for below   l/ß. 

lbs preeeure distribution oa the fuselage of a aidwlng airplane 
baa been studied by Delano.    (See reference it.)    Zt «aa found that the 
peak negative pressures on the fuselage occurred near the «lag and were 
mors dapaadaat on the «lag than oa the fuselage.    The variation of these 
peak pressures was In good agreement with the    l/ß   lav, but at other 
points oa the fuselage the pressure-coefficient variation does not 
follow this lav.    These conclusions are la agreement with the data shown 
la figure 10«   Zt appaara that near the wing «bora the peak pressures 
occur, the flow la nearly two-dimensional and the l/ß   lav glvss a good 
picture of tba actual variation of the preesure coefficient.   Bat at 
point« farther from the wing tba flow la more nearly three dimensional 
and at euch points «bleb are not toe olose to a stagnation point the 
preeeure coefficient ahould be constant at lsast for yurj slender bodlas 
according to the theory developed In this report.   For s raw what thicker 
bodies the preeeure coefficient any rlas slowly with Increasing Mach 
number and aquation (30) gives a formula for thle Increase.    Tba ex- 
perimental data of Dslanc show several different types of preeeure- 
eosfflolsnt variation.    The type may depend on tba proximity of tba 
«lag and may result from wing and fuselage pressures following different 
lavs of variation. 

It la asaiaaad by Robinson and Wright (reference 6) that the variation 
of the peak pressure coefficient with Mach number can beat be represented 
by the    l/ß   law for three-dimensional flow aa well aa for two-dimensional 
flow.    In view ef the foregoing discussion thle would appear to be Justi- 
fied, provided the peak preeeure coefficient occurs near the wing, and 



HACA HM IB. A6H19 23 

this la usually the case at least far a wing and fuselage combination, 
•o attempt la made In reference 6 to predict the preaaure-coefflolent 
variation at points ether than «here the peak oeeure. 

It mmmaajaj that, for those bodies which approximate closely to 
bodies of revolution and for points not too close to a stagnation point, 
the pressure coefficient Is nearly constant or lncreaees slowly «11k 
Mach number. It cannot be said that the pressure coefficient la exactly 
constant In all cases, aa proved In this report for a •mrf slender «017 
of revolution, nevertheless equation (30) appears to evereetlnete tha 
actual Increase for tha true bodies of revolution tested. 

COMCUJSIOKS 

1. four related method» and a general method for the study of 
dimensional axlally symmetric ccapresslbls flow by means of the linear 
perturbation theory are presented. In each caae tha properties of the 
compressible flow ere obtained fron those of a correspending Incompressi- 
ble flow. lach of the methods possesses certain advantage» over the 
others. For example, In method XI the body shape, alt«, and orientation 
are the same In the correepcndlng Incompressible flov aa In the com- 
preeelble flow; whereas In method IV the streamline fields are entirely 
similar, the Incompressible field being obtained by a contraction of the 
compresBlble field In the radial direction. Methode I, II, and III are 
limited to very slender bodies; whereas method IV nay be applied to bodlee 
of moderate thleknesa. 

2. By means of each of these four methods. It Is found that the pres- 
sure coefficient at the aurfaoe of a very slender streamline body of revo- 
lution placed In a uniform stream of compressible fluid la nearly Independ- 
ent of the Mach number, being entirely Independent of the Mach number In 
the limiting ease of zero thickness. This result la Invalid near a »tag- 
nation point and Its application Is therefore usually limited to the 
central portion of the body. For a prolate spheroid the variation of the 
peak pressure coefficient with Mach number Is given by the formula 

(Fnax), 

(*. 
- 1 * 

1°S (1-M*) 

i)t     log(t/l)
8 • 2(l-log2) 

and thin reeult may be used for bodies of moderate thickness (thickness 
ratio less then 0.30). For very slender bodies the second term la neg- 
ligible while for a thloksees ratio of 0.2 the Increase In the pressure 
oeefflcient le about half that for a two-dimensional body. 
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3- bperlaental date for todies of reTolutlon vlthout vlnga er other 
protuberance» allow nearly conatant or slowly rising preesure coefficient 
aa to» Mach number lncreaaea.    The rlae la uaually law than that pre- 
lle tad by aquation (30).    Experimental late for bodlea of revolution 
with -wings »how nearly conatant or aloviy rising preaaura coefficient 
far fro» tea vlng nut rapidly rlalng preaaura coefficient near tea wing, 
tea rlae agreeing with tent predicted for two-dlnenaionel bodlea. 

•. OB tea fuaelage of an airplane near tea wing tea preaaure ooeff1- 
clent is Influenced acre by tea vlng than by tea fuaelaga and, at auch 
polnta, the preeaure-ccefflclent variation la beet represent by tea 
1/7" 1 - M«   lav appropriate to two-dlaenelonal flow.    Since tea peak 
pressure coefficient usually occur« near tea vlng, the variation of peak 
preaaure coefficient for a wing-fuselage ecsblnetlon la boat represented 
by tea   l/Vl -M»   lav.   On tea other hand, at points on tee fuaelage 
far from the vlng aal not close to a stagnation point tea pressure 
coefficient ie nearly constant.    Til order to obtain en eatlamte of the 
rlae in tee pressure coefficient, tee result for tee peak pressure coeffi- 
cient glean by equation (30) any be need. •-• 

A«»e Aeronautical Laboratory, 
national Adrlaory Committee for Aeronautics, 

Moffett Field, Calif., Nay 13, 19*6. 

. 
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PROLATE SPHEROID - IHCi ras now 

Consider * freut« spheroid 1—STSIII In a uniform atreu of incom- 
pressible fluid whose velocity at a large distance fra» the body la   Te 

la the direction of the positive x-axle.    Suppose the spheroid to be 
located with Its center at the origin and Its major ails along the x-axla. 
Let   e   AsBot» the distance of either focus from center of spheroid and 
1/ q   denote the elliptic coordinates for a msrldlsn section, so that the 
following relations between the coordinates are satisfied: 

x - o eon t COB T) 

•••'.§ m e slnh t als q 

Alee 1st 

a - e eoah (* - aemimajor axis of ellipse forming meridian section 

b > c slnh t* - s—lalnrir axis of ellipse firming meridian section 

e - y1 - (b/a)    - - -       fc m - eccentricity of ellipse forming meridian 
a     coen i atetlon 

I*   Is the value of    ?    on the ellipse forming meridian section. 
Then the Telocity potential for this flow is given In section 109 of 
Lass's Hydrodynamics (reference 19) In the fern 

» • to* -• 
ate« 

_l+e ?e tt -cosh* leg 

1-«     1-m" 
coah — -»} e -l     J 

(Al) 

If the equations which give x end r In term 
differentiated partially «1th respect to z and r, 

of t and q ar 
It Is found that 

•aem   i 

dx 

a« 
•eel   i 

or 

dq slnh t eos q 
—•• * •^—^——^— 

or  e(coah2», - eesa q) 

dq    cosh t sin q 

dx  c(eoshat - eos* q) 

- 

* 
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The Telocity ccnponent In the direction of the x-axla Is glTen tgr 

T*"S'5iS*oiiS 

Whan aquation (Al)  la uaed, it 1« easily found that 

T. - Y„ - 

'«- l-o* 
{ log 

ooeh| + 1        8 ooah t 

eoaht-1     coah  I-ooa -J (AS) 

Similarly, the radial Telocity it 1* glTen ay 

*"oS"R!?4t|!r* 
and it le easily found that 

V- - 
8V0 ein 1) ee« i| 

(logiÜ _ 2S_j f oomBa ( _ 00ta aj alnh 5 
(A3) 

At the surface of the apharold equations (A2) and (A3) reduce to 

140    2e 

1 - 
108 l-O " 1-Qg 000» 

l+o   So 
(**) 

See sin i) ooa n 

\-S-«**"-";' 
(A?) 

- —•<* m ,i- 

• 



1WCA 

«UM« 1 • 0   car   n.   AI«, 

w«l"M   n • 0   er I«« n ;„uc£ «**^5S£ ^ -*-«« (o/.,. „, 

»- - 



IM» m ib. ASH.9 

*.»-£)• ".(*;-<-•,-*. <)' («6) 

In the HM way it tollmm that 
. 

lim Vfo _ n« 2»   fjg n ooa | 
»/•-><>     b/a     "•>!    (iVoo.» n)j(l-e»)[log(l«e) -log(l-e) ] - 8eJ 

2eln i) co« i) 

-2elna n 
-COt  T) 

unleee   T) » 0   er   >.    Aue If turn* of higher order than    (b/a) 
neglected, there Is obtained, except for   i - 0   er   *, 

•-•/»0 - - (o/a) eet n (A7) 

If It la remenbered that the preseure coefficient at the surface 
of the spheroid la given by 

r - i - (v *A0)* - (VA.)' 

and If tern» of higher order than   (b/a)2   are neglected It follow that 

P-   .  (b/a)a lcg(b/a)a * (cot2 • • 2-6 log 2)(b/a)= (A8) 

unleea   <\ - o   or   «. 

For ecae purposes It ir convenient to give expreesione for   ^^t^0, 
and   F*    in terae of   z    instead of   q    In mich case equation* (*S)    and 
(AB) BMCOBS 

Ixl.l-i(k-)^(i/-(-i-;-10.2) 
» 2 ^a' ^a'       ^l-lx/al* ' l-(x/a)a »©* (A9) 

•a*'-a;-(i«i-««s)ö)*   <- 
«nleea   z/e -  t1. 

- 
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